L7 AD-A129 157  OPTIMAL CONSTRAINED REPRESENTATION AND FILTERING OF 11
SIGNALS(U) VIRGINIA UNIV CHARLOTTESVILLE DEPT OF
ELECTRICAL ENGINEERING.. D KAZAKQS JAN 83

UNCLASSIFIED UVA/525634/EEB3/108 AFOSR-TR-83-0465 F/G 12/1 NL




" s oy
N
) == u ™
B A ™
1] ] L g2o
s =
‘ = 1.8
.
|||"l.25 1.4 W16
———

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




T

( AFOSR-TR- 83. 04¢5

A Technical Report

OPTIMAL CONSTRAINED REPRESENTATION AND
FILTERING OF SIGNALS
Submitted to:

Air Force Office of Scientific Research
Bolling Air Force Base
Washington, D. C. 20332

Attention: Dr. Robert Smythe

ADA129Y157

Submitted by:

Dimitri Kazakos
Associate Professor

/

Report No. UVA/52563%4/EE83/108 E-n T
January 1983 !c

r

4 b P ey ) I D e e mEe B

DTIC FILE COPY

o v PR3+ R iping e €

COMMUNICATIONS SYSTEMS LABORATORY
DEPARTMENT OF ELECTRICAL ENGINEERING
SCHOOL OF ENGINEERING AND APPLIED SCIENCES

UNIVERSITY OF VIRGINIA

T §3 06 10 039

VINIAW




B ALY Y T

IF1ED

UNCL

86
SECUMTY CLASKEICATION OF THIS PAGE (When Data Entered)
smean READ INSTRUCTIONS . -
Rm DOCUMENTAT'ON PAGE BEFORE COMPLETING FORM
[T REPGAT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AFOSR-TR- 83-04¢5
4. TITLE rand Subtitle) ' S. TYPE OF REPORTYT & PERILD COVERED
OPTIMAL CONSTRAINED REPRESENTATION AND FILTERING{ TECHNICAL
OF SIGNALS
6. PERFORMING OG. REPORT NUMBER
UVA/525634/EE83/108
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Dimitri Kazakos AFOSR-82-0030

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Electrical Engineering Department

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

University of Virginia PE61102F; 2304/A5 —
Charlottesville VA 22901

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ‘_ﬁ
Mathematical & Information Sciences Directorate JAN 83
Air Force Office of Scientific Research 13. NUMBER OF PAGES
Bolling AFB DC 20332 14

4. MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Oflice) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
15a. DECL ASSIFICATION, DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report) 4
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if dilterent from Report) ~—

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Signal filtering; data compression; data representation.

. ABSTRACT (Continue on reverae side If necesaary end identily by block number)

A random signal is observed in independent random noise. The autho? is
addressing the problem of finding the optimum signal estimate that is C9n-
strained to lie in a given linear subspace. The optimality is defined in
the sense of weighted mean square error. In the second step, the author
finds the optimum linear subspace of given dimensionality. It is shown to
be the linear manifold spanned by the eigenvectors of ‘the simultaneous
diagonalization of the signal and noise covariance, that correspond to the

largest eigenvalues. The result is valid for both discrete and (CONTINUED

JAN 73 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE hen Date Entered)

83 06,10 036

DD |"°"" 1473  €EDITION OF 1 NOV 63 1S OBSOLETE




> N ) j .
SECUmTYY cg..,: .&,.05_ OF THIS PAGE(When Date Entered) .. .
M e

ITEM #-O, CONTINUED: Lcon’c:.nuous time. For large observation time and
stat’.onary signals, it is shown that the constrained optimal estimate is
¢:.cermined by the two spectral densities and a weighted Fourier Transform
| _ - of the noise observations. The above result applies. to both discrete time
g and continuous time signals.
‘ Nt 4
The Wiener filter emerges as a special case of the constrained filtering S
estimate, when the linear subspace is enlarged to c01nc1de with the total
measurement spaceK
g
,';-a‘f" b
! ]
—
i
o )
4 s
2 Lo
£
a0 ¢
2
b 3
y .
b f
& i
.

SECURITY CLASSIFICATION OF Yu'c PAGE(When Dare Entered)




= ¥ | TR- 88- 04 65 Accession Por

S [ NTIS aRAsI )
T DTIC TAB ’
Unwwousced )
Juiﬂ,1.310.!.14»:___..,_.__.1
By 31
Distrid
A Technical Report _Distridutien/
w@_yaliylntuvty Codes
OPTIMAL CONSTRAINED REPRESENTATION AND : jAvail amd/or
FILTERING OF SIGNALS Dist ‘ $peeial
Submitted to:
. Air Force Office of Scientific Research
Bolling Air Force Base
" Washington, D. C. 20332 ’
Attention: Dr. Robert Smythe
] Submitted by:
Dimitri Kazakos
Associate Professor
!
2 Department of Electrical Engineering
RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES
i ) SCHOOL OF ENGINEERING AND APPLIED SCIENCE
3 UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA
“ AR 1
OF SCTENTTFIC RESEARCH (1¥sC

(o NOTICE OF TRANSMITMALTODTIC
| This technical rsmort has vesn T‘;vaa)-lz.
approved for rublic ralense JAW AFT

i I aistributionunlimited. J.
4 o ::ﬁg..‘rnhnlcal Informetion Division
kI
5 I Report No. UVA/525634/EE83/108 Copy No.
: “ Jaguary 1983
¥
d % A
‘é -y T .E

= REL
————
| —
o)

i el




. T R
Iy A - b e | 1A - s

Optimal Constrained Representation and
Ffltering of Signals

Dimitri Kazakos
Electrical Engineering Department
University of Virginia
Charlottesville, VA 22901

Abstract

A random signal is observed in independent random noise. We are
addressing the problem of finding the optimum signal estimate that is
constrained to lie in a given linear éubSpace. The optimality is defined
in the sense of weighted mean square error. In the second step, we find
the optimum linear subspace of given dimensionality. It is shown tb be
the linear manifold spanne& by the eigenvectors of the simultaneous
diagonalization of the signal and noise covariance, that correspond to the
largest eigenvalues. The result is valid for both discrete and continuous
time. For large observation time and stationary signals, it is shown
that the constrained optimal estimate is determined by the two spectral
densities and a weighted Fourier Transform of the noise observations. The
above result applies to both discrete time and continuous time signals.

The Wiener filter emerges as a special case of the constrained
filtering estimate, when the linear subspace is enlarged to coincide with

the total measurement space.

Research supported by the Air Force Office of Scientific Research by
Grant AFOSR 82-0030.

Key Words: Signal Filtering, Data Compression, and Data Representatiom.
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I. General theory for discrete time signals

I
]
:
|

Consider a deterministic signal xeR" = n-dimensional Euclidean
space. Let v 4 {V1 « o e Vm; m < n} be a collection of orthonormal
column vectors vieRP. The minimum square error norm representation of x
in the liniar manifold of V" is defined as the solution (a1 . .0 am? that

m
minimizes ||x - z aka||2. It is well known from linear algebra that the
k=1

best approximation X on V" is:

~

m
z=pPx 8 @) Vi V:)x; P = projection operator (1)
k=1

If x 18 a random signal with zero mean and covariance matrix

Rx 4 ExxT, then it is easy to demonstrate that: [1]

n

s 112 T
s (V) 2E|lx-x||“= § vworRV (2)
m kent] K X K

where x is the best approximation given by equation (1), and Sm(Vn) is
the minimum mean square error achievable for representation of x, using
as basis the set V".

Suppose now that we wish to choose V" s0 as to minimize Sm(Vn). The
minimization 1s achieved if V" is chosen as the set of eigenvectors of R.x
[1], and the resulting minimum value of sm(v“) is: [1]

s*x(v") = ? A
m kemtl ©

where A1~3 Az.l . 4 An are the eigenvalues of Rx’ ordered in decreasing

magnitude.
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Consider now the case of estimating x, on the basis of noisy data.

The available observation is:

y=x+z, Ex = Ez = O, Exz) = 0

T

T (%)
Exx =R, Ezz" = R, Ir,| # 0

Let x be an estimate of x. The weighted mean square error Sm(Vn) is

defined as:

-~ 2 A 2
sm(vn) - B||x = x'l Rfl - El'xl = x1|| ’ (5)
4

- -1/2 L. -1/2 .
xl Rz x , x1 2 x

1/2

and Rz is the unique symmetric positive definite square root of Rz,

which exists because IRZI % 0. Let vy = R;I/Zy, z; = R;llz z. Then,

1/2

multiplying (4) by R; we achieve whitening of the noise: Y, = x1+zl,

-
Ezlzl I.
We consider now estimates of xl of the form:

‘i‘ T
X, = e, V.V.y (6)
1 5 kkE1

From equation (5), the mean square error is found to be:

m
T 2 T
VRV + ) Oy (v RV, + 1]

v &gy 2= 3
s (v) = gllx, - x =
= 11 k=m+l k=1

T T
- 2ck kavk + VkRVk

- -1/2 -1/2
where R Rz Rsz .

If we minimize sn(v") over the choice of the constants c1 v s e ¢':‘l

we find that the minimizing values are:

+ 1)"1

o vT T
EN (Vk R Vk) (vk RV

k
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with a resulting minimum of sm(vn):

m n
se(v") = ¥ g(w) + W . (9)
n k=1 K k-n)::.u k
where:
v 8V RV, g@f1-G+D < (10)

Our next effort is to choose Vn.so that S;(Vn) is minimized. From
(9), (10) we observe that {wi} have to be minimized, and in such a manner
that the m smallest achievable values are assigned to the second partial
sum in equation (9), while the other n-m larger ones are assigned to the
first sum. So, we first minimize LA then Va1’ t o gy Vg ¢ ot e V-
At each step of minimizing w; over V, such that HVjH2 = 1, the previous
vectors Vj+1 V3+2, SRR A have been found and are fixed. Hence Vj has
to be orthogonal to the previously found vectors {vj+l Vj+2 . o . Vn}.

From matrix theory [2], we observe that the above procedure for
finding the optimum set {Vj} produces the eigenvectors {Qj} of R. Let

x1.3 12 200> An be the corresponding eigenvalues. Let us denote by

s;* the minimum over {V"} value of S;(Vn). Then,

) by 3
Sk* = 1-Q@+2)7)+ A (11)
T kel k kemtl K
The corresponding optimal ck's are:
-1

& = Ak(l + Ak) (12)
and the optimal estimate x is:

iert/2; - ? 2 (1 + )L g/2 o of g-1/2 a3

z 1 .k k z k 'k z ye

k=1




It is well known that the eigenvalues Ak, of R satisfy the equation

RS e i A St et b )

|sz - Rx| = 0, and Q_ are the eigenvectors of R_with respect to R . [1]

For the case m=n, the optimum estimator of x is identical to the Wiener
filter, as can be easily verified. Thus, the new optimal representation

. i or estimation of the noisy signal x can be viewed as a constrained linear

estimate of prespecified dimensionality.
The main computational difficulty of the representation is the
evaluation of the eigenvaiues and eigenvectors {Ak, Qk; k=1, . . ., n} é
i of the matrix Rx with respect to the matrix Rh' There are some special
cases in which the eigenvectors and eigenvalues can be evaluated in

closed form, described next.

Dosh & tia o Bin -
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Example 1. Suppose that x is produced by uniform sampling every h sec. of

a periodic process with period sh. Then R_ is a circulant: (q = q_,)

g
L0 i1 9 - - "n-ﬂ
-1 9 9 + » * 92
R.= | . _- a4
qy a4 |

i.e., each row is a cyclic permutation of the first one. Let, also z be

- o | T
white noise with R.z (o] In' The matrix R Rz Rx Rz o Rx has real
eigenvalues [3], [4]:
-2 B -
A =02 § q_, exp (-20i(s-D(k-Dn k=1, ..., 0 (5
k el s~1 ’

The corresponding eigenvectors are:

Q - {n% exp [-ij(k-l)(s-l)n-ll; s=1, . . ., n}. (16)

Hence, it is an easy matter to pick the m largest eigenvalues from ,(15),
the corresponding eigenvectors from (16), and then formulate the optimum

estimate according to equation (13).-

Example 2. Tridiagonal correlation.

[P |
F-
o
4

R. = |q 1. 3 Rz =g In'
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The eigenvalues of (17) are [5]:

lk = 0-2(1 - 2|q|coslkn(n + 1)-1]5; k=1, .. .,0 (18)

The corresponding eigenvectors are [5]):
Qk = {{2/(n + 1)]% sin[ksr(n + 1)-1]; s=1,2, .. ., n} (19)

We will consider next the case of stationary observations and large n.
Then, the matrices R, R, are Toeplitz. Let ax(l), sz(X); Ac [0, 2u] be the

spectral densities of the processes x, z, assumed to be strictly positive for

“all Ae[0, 2n]. We also assume that the autocorrelation sequences for x, z are

square summable. Then, according to the theory developed in [4], we can
determine the asymptotic distribution of the eigenvalues of the matrix R and

the corresponding eigenvectors. The eigenvalues are for k=1, . . ., n:

1
Ak

[ K]

sx(Zwkn_l) sz-1(2wkn- )) (20)

n

Q

K {n-k exp (- ij(k-l)(s-l)n-ll; s‘- | P n} (21)

The matrix Rz has the following approximate expression for large n:
~ g -1 T
R, % ] 8.(2®kn ) Q Q (22)
kel
For the optimal representation of x by an m dimensional subspace, the m
indices corresponding to the m larges eigenvalues Ak according to equation (20)
will provide the solution. The corresponding eigenvector Qk given by eq. (21)
will determine the estimate &, according to eq. (13). From equations (11),
(20) ye can derive the resulting mean squafe error:
S -1, -1, . -1 -1
St* = § [1 - [s_(27kn )8, (2%kn ") + 11771 +
m x :
k=1
n

-1, =1 -1
+ 8_(2%kn )& “(27kn *)
u-§.+1 X z - @
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We now let m be a fixed fraction of n, m = np, 0 < p < 1. The question we
consider now is: If a fraction p of the signal coordinates are allowed, what
is the best achievable mean square error when n+«? We are specifically
interested in the asymptotic per sample mean square error, defined as:

S*x*(p) A lim n-ls* (under the condition m = np) (24)
’rrk” np

From (23), {24) we find:

sek(p) = N7 (L - [s st ) + 1170 jan +
I
P
+ @ s ) &7 () dx (25)
-f X Z
p
where I_ is a subset of the interval [0, 27], of Lebesgue measure 27p, and such
that the largest values of sx(l)s;1 (A) are concentrated in Ip. In other
-1 -1
words, for any AleIp, Azélp, we will have sx(kl)sz (11) _>__sx(>\2)sz (Az).

Our conclusions are useful for suboptimal filtering and compression of
noisy data. The compression ratio when the subspace of dimensionality m = np
is used, is equal to p~l.

From the theory of asymptotic approximation of Toeplitz matrices by
circulant ones, ([3), [4]) we find that using (22), for large n, we have:

By § oG -1 T, k. Tk -1 T
R¥S ] s, (2mkn ) Q Qs R I st (™) @ Q (26)
k=1 k=1
where ﬁQk} are the Finite Fourier Transform vectors, defined by eq. (21).

Substituting the approximations (26), (20), (21) into (13), and using

the orthogonality of {Qk}. after some algebra we find the following expression

for %:
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‘v;',‘: 'f
) &= Q €. ¥ 27)
: ko1 k kK
where:
¢ 4 [L - [s_(2mkn Ds ' (2mkn ™) + 117 (28)
= X z
and
Y = Q: y (29)

are the Discrete Fourier Transform (DFT) coefficients of the vector y. They

can be evaluated by Fast Fourier Transform methods.
i Equation (27) provides the following conclusion. If one wishes to
represent x using m of the DFT coefficients, and a noisy version of x is
only available, the mean square optimal representation will be achieved through
(27) - (29), assuming that s.» S, are known a-priori. The weighting coefficients
e essentially act as optimal filtering coefficients in the orthogonal
directions of the representation subspace. The directions are chosen so
that the signal to noise ratio sx(ann-l)' s;l (ann_l) is maximal.

It should be stressed that the estimate X is given by the approximate
expression (27). The question of how well the approximate estimate performs
as compared to the exact one, is of interest but not pursued here. For the
unconstrained filtering problem, Pearl has derived interesting bounds for
the variance of the approximate filtering estimate based on the Discrete

Fourier Transform {6]. We believe that his work on asymptotic equivalence

of spectral representations [7] is applicable in deriving bounds for the mean

‘ square error performance of the approximate constrained estimate (27).
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II. Continuous time signals

We will congsider now extension of the previous theory to continuous

o~ .
- - ke

time random signals observed in the presence of noise. Let

y(e) = x(t) + 2(t); 0<t<T

where x(t), z(t) are zero mean processes of finite mean square value, with

correlation functions Rx(t, 8), Rz(t, s) correspondingly.

Instead of developing a new theory parsllel to the development of Section
I, we will proceed stating the continuous time analogous results. All of the
continuous time development can be made rigorous by using Kadota's
| simultaneous orthogonal expansion of two operators (8], [9].

! Consider the operator:

- R & R(t, s) = Rz—% R, RZ"L2 (30)

i - where Rz-k is the inverse of the square root of Rz(t, s), appropriately defined.
The assumption that R is a bounded and densely defined operator has to be
made [9]. Then, R has a set of orthonormal eigenfunctions f¢k(t); k=1, 2, ...}

and corresponding eigenvalues {11 2_12 > .. .}, satisfying the integral equation:

T
[ R(Es )8, (s)ds = A 4, (0 (1)
0
Let
P T
: 2, () = [ R.77 (¢, 8)0, (s)ds (32)
0

Then {zk(t)} are the eigenfunctions of Rx with respect to Rz with corresponding
eigenvalues {Ak}. in analogy to the time discrete case. The mean square error

1 ; of estimating x(t) using m coordinates only, will be minimized if
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the eigenfunctions corresponding to the m largest eigenvalues are used. The

eigenfunctions zk(t) satisfy the integral equation:

T T ;
g Rx(t, s)zk(s)ds = Ak é Rz(t, s)zk(s)ds (33) |

and the orthogonality condition with respect to Rz: i
TT

(j) {, 2, (DR (t, s)zk(s)deds = §, (34)

The estimate %(t), after some manipulations, is found to have the expression:
m -1 T T
%(t) = kzl A+ ([) R, (t, 8)z, (s)ds - {) z, (w)y (u)du (35)

The resulting mean square error is:

m ©
-1
sé#x = J [1- (L +D171 + A (36)
m k-Z-l M k-'l}!:r!-l k

With the exception of some special cases mentioned in [8], the evaluation of
eigenvalues and eigenfunctions cannot be achieved in closed form. Numerical
solutions are required, in general. Hence, equations (33)-(36) are of
theoretical interest but limited practical usefulness.
There is a special case of practical importance, in which simplifications
- are possible. Suppose that x(t), z(t) are wide sense stationary processes
of finite average power, and are observed on [~T/2, T/2]. Suppose also that
. !‘ the corresponding spectral densities sx(f), sz(f) are positive on [-W, W] and

zero otherwise.

: } For large T, Van Trees develops in [10]) approximations to the eigenvalues
]. and eigenvectors of an integral equation of the type (33), but for the special
oA case Rz(t, 8) = 8§(t - 8). Straightforward extension of the approach of Van

Trees yields the approximation:

wries A '\f!'W‘
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for large T. Note that the approximate numbers of eigenvalues or degrees of
freedom of the signals involved are 2WT, equal to the number mandated by the
sampling theorem for bandlimited random processes.

Suppose now that a fraction p of the 2WT degrees of freedom is used. The

resulting approximation to the mean square error is:

2TWp -1 2TW
ser(m) 2 ] [L- QAT+ Ty
P k=1 k=2WTp+l

where the ordering of eigenvalues is:

| Ae DAy > . . >

NER YR L S I

2TW

We can evaluate now the asymptotic representation error per unit time as

T+ o0

-1 -1
Sk* 4 m T sk (T) = { s, (E)[s (£) +s ()] df +
P
-1
N 4-jl_sx(f)sz (f)df.
i p

where Ipc[-w, W] is a subset of Lebesque measure 2Wp, such that the ratio

-1
Y sx(f)sz (f) is maximal, i.e. for all fle Ip, f2 ¢ Ip we have

1

s (£)8, 7)) 2 s, (£,)8 T (£,).

———
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Conclusions

We have developed some intuitively sensible conclusions on the constrained
representation of noisy signals, when the signal and noise covariances are
known. We have shown that the eigenvalue-eigenvector expansion provides the
minimum mean square error subspace of fixed dimensfonality. The use of eigenvectors
and assoclated subspaces has been proven useful in various signal and image
processing applications, assuming no noise ([10] - {[13]). Problems in which
the developed techniques are applicable are the simultaneous compression and
filtering of noisy speech and images, and the processing of sensor array data.

(see, for example, [14]).
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